Leveraging Model Guidance to Extract Training Data from Personalized Diffusion Models

Xiaoyu Wu, Jiaru Zhang, Zhiwei Steven Wu

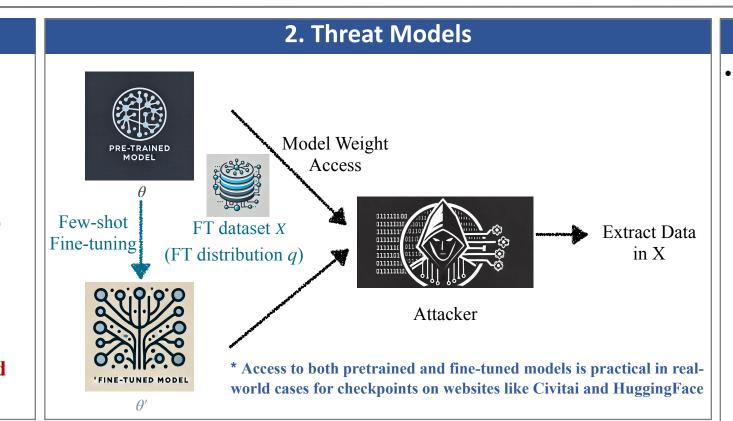
TL;DR: We extract ~20% training data from real-world fine-tuned diffusion model checkpoints!

Carnegie PURDUE Mellon UNIVERSITY. University

1. Motivation

• Few-shot Fine-tuning:

- Quickly adapt a pretrained DM to given subjects or objects
- ➤ Low computational costs
- > Fostering larger platforms



Hugging Face

Released fine-tuned checkpoints' risks:

- > Copyright Risks: Unauthorized use of artists' work
- Privacy Risks: Sensitive data such as human faces included during fine-tuning

Is it possible to extract fine-tuning data from these fine-tuned Diffusion Model checkpoints released online?

3. Methodology

Model Guidance

Parametric approximation:

$$P_{\theta'}(x) \propto P_{\theta}(x)^{1-\lambda} \cdot q(x)^{\lambda}$$

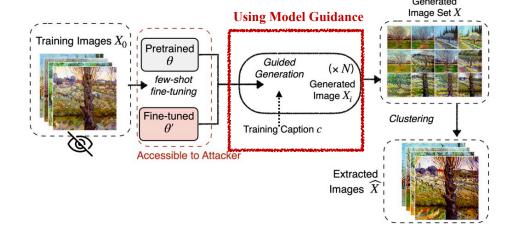
Guidance towards q using scores of θ and θ'

$$\frac{\nabla_x \log q(x) = \nabla_x \log P_{\theta'}(x) + \frac{1 - \lambda}{\lambda} (\nabla_x \log P_{\theta'}(x) - \nabla_x \log P_{\theta}(x))}{\lambda}$$

Denoising function

Difference between two models

Using equivalence between score $\nabla_x \log p(x)$ and denoiser $\epsilon_q(x_t, t)$


$$\epsilon_q(x_t, t) = \epsilon_{\theta'}(x_t, t) + (w - 1)(\epsilon_{\theta'}(x_t, t) - \epsilon_{\theta}(x_t, t))$$
 where $w = \frac{1}{\lambda}$

Extending to caption c available:

$$\epsilon_q(x_t, t, c) \approx \epsilon_{\theta'}(x_t, t, c) + (w' - 1)(\epsilon_{\theta'}(x_t, t, c) - \epsilon_{\theta}(x_t, t)) + k\epsilon_{\theta}(x_t, t)$$

Guidance: unconditional pretrained DM Correction Term
-> conditional fine-tuned DM

Our Framework FineXtract

Step 1: Generate N images with model guidance.

Step 2: Find best candidates within N images using clustering.

Step 3 (Evaluation): Compare selected images with training images.

4. Experiments

Real-world Results:

Extracted Images

Training

Images

• Quantitative Results:

Style-Driven Generation: WikiArt Dataset

Metrics and Settings	DreamBooth			LoRA		
	AS↑	$A\text{-ESR}_{0.7} \uparrow$	A-ESR $_{0.6}\uparrow$	AS↑	$A\text{-ESR}_{0.7} \uparrow$	A-ESR _{0.6} \uparrow
Direct Text2img+Clustering	0.317	0.00	0.01	0.299	0.00	0.00
CFG+Clustering	0.396	0.03	0.11	0.357	0.00	0.01
FineXtract	0.449	0.06	0.22	0.376	0.01	0.05

Object-Driven Generation: DreamBooth Dataset

Metrics and Settings	DreamBooth			LoRA		
	AS↑	$\text{A-ESR}_{0.7} \!\!\uparrow$	A-ESR $_{0.6}\uparrow$	AS↑	$\text{A-ESR}_{0.7}\!\!\uparrow$	A-ESR $_{0.6}\uparrow$
Direct Text2img+Clustering	0.418	0.03	0.11	0.347	0.00	0.02
CFG+Clustering	0.528	0.15	0.36	0.379	0.01	0.05
FineXtract	0.557	0.25	0.45	0.466	0.04	0.18

5. Summary

- ➤ We show that it is possible to extract fine-tuned data largely used for few-shot fine-tuning.
- ➤ We parametrically approximate the fine-tuning process and apply **model guidance** to effectively extract data.
- ➤ We show our extraction is successful in real-world scenarios.

Project homepage:

https://github.com/Nicholas0228/FineXtract

