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Abstract. Bayesian neural networks have drawn extensive inter-
est because of their distinctive probabilistic representation frame-
work. However, despite its recent success, little work focuses on the
information-theoretic understanding of Bayesian neural networks. In
this paper, we propose Information Bound as a metric of the amount
of information in Bayesian neural networks. Different from mutual
information on deterministic neural networks where modification of
network structure or specific input data is usually necessary, Infor-
mation Bound can be easily estimated on current Bayesian neural
networks without any modification of network structures or train-
ing processes. By observing the trend of Information Bound dur-
ing training, we demonstrate the existence of the “critical period”
in Bayesian neural networks. Besides, we show that the Information
Bound can be used to judge the confidence of the model prediction
and to detect out-of-distribution datasets. Based on these observa-
tions of model interpretation, we propose Information Bound regu-
larization and Information Bound variance regularization methods.
The Information Bound regularization encourages models to learn
the minimum necessary information and improves the model gener-
ality and robustness. The Information Bound variance regularization
encourages models to learn more about complex samples with low
Information Bound. Extensive experiments on KMNIST, Fashion-
MNIST, CIFAR-10, and CIFAR-100 verify the effectiveness of the
proposed regularization methods.

1 Introduction

Bayesian neural networks are a unique class of neural networks
that typically refer to stochastic artificial neural networks obtained
through training with Bayesian inference methods [15, 29]. BNNs
can be effectively trained using Variational Inference [5, 6], which
has proven particularly useful in large-scale practical applications.
One of the primary advantages of Bayesian neural networks is their
probabilistic representation of network parameters, hidden represen-
tations, and outputs. This characteristic endows Bayesian neural net-
works with enhanced interpretability for both model weights and pre-
dictions. Consequently, Bayesian neural networks have demonstrated
considerable potential and have been extensively employed across
various tasks, including computer vision [19, 22, 32], natural lan-
guage processing [39], active learning [20], semi-supervised learning
[3], continual learning [25], and reinforcement learning [11].
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Although Bayesian neural networks offer a natural probabilistic
representation of network parameters and model predictions, there
has been limited research focusing on information theory and its ap-
plications within the context of Bayesian neural networks. Jae Oh
Woo [37] proposed an analytical solution for calculating the mu-
tual information between model parameters and predictive output in
Bayesian neural networks. This approach has been employed in ac-
tive learning to select the most informative data points from datasets.
However, to the best of our knowledge, no existing work has ad-
dressed the calculation of mutual information between input and in-
termediate features in Bayesian neural networks. Estimating such
mutual information in deterministic neural networks typically ne-
cessitates specific input data [33] or modifications to the network
structure [2]. This gap in the literature highlights the need for further
exploration of information theory in the context of Bayesian neural
networks, which could potentially lead to novel insights and applica-
tions in various domains.

In this paper, we introduce Information Bound, a novel approach
to estimate the mutual information between input and hidden repre-
sentations in Bayesian Neural Networks. Information Bound serves
as an upper bound for the mutual information between the network
input and the hidden representation. Within the context of Bayesian
neural networks, Information Bound can be viewed as a metric quan-
tifying the amount of information about a specific input. By judi-
ciously selecting the prior distribution q(z) as a Unit Gaussian dis-
tribution, N (0, I), Information Bound can be easily estimated in
Bayesian neural networks without necessitating any modifications to
the network structure or training process. This innovative approach
paves the way for a deeper understanding of the relationship between
input and hidden representations in Bayesian neural networks, poten-
tially leading to improved model performance and interpretability.

Information Bound plays a crucial role in interpreting Bayesian
neural network models. By monitoring the variation trends of In-
formation Bound during model training, we can confirm the exis-
tence of the two periods, “learning” and “forgetting”, in the training
process of Bayesian neural networks. Furthermore, both theoretical
analysis and experimental verification indicate that Bayesian neural
network models tend to make more accurate predictions on samples
with higher Information Bounds. As a result, Information Bound can
be employed to evaluate the confidence of model predictions. Since
Information Bound represents the knowledge of a Bayesian neural
network on inputs, it can also be utilized to detect out-of-distribution
datasets. This capability further emphasizes the importance of In-



formation Bound in understanding and interpreting Bayesian neural
network models.

Based on the model interpretation with the critical period, we pro-
pose Information Bound variance regularization to encourage the
network to learn the necessary minimum information during train-
ing. This technique aims to encourage the network to focus on learn-
ing the essential minimum information during the training process.
By doing so, it effectively reduces the amount of redundant infor-
mation captured by the model, leading to improved robustness and
generality. Moreover, based on the analysis that models tend to make
incorrect predictions on samples with low Information Bound, we in-
troduce Information Bound variance regularization. It is specifically
designed to enforce the network to learn more information on com-
plex samples, thereby enhancing the model’s performance on chal-
lenging instances. To validate the effectiveness of these two regu-
larization methods, we conducted extensive experiments comparing
models trained with and without the proposed techniques. The re-
sults demonstrate that models incorporating Information Bound vari-
ance regularization outperform their original counterparts, highlight-
ing the potential benefits of incorporating these methods into the
training process.

In summary, the main contributions of this paper are listed as fol-
lows:

• We introduce Information Bound as a metric to measure the quan-
tity of information in Bayesian neural networks. This metric can
be easily estimated on Bayesian neural networks without requiring
any modifications to the training process or network structure.

• We demonstrate that Information Bound can be used to interpret
Bayesian neural networks. By tracking the trend of Information
Bound during training, we provide evidence for the existence of
a “critical period”. Furthermore, we show that Information Bound
can be employed to estimate the confidence of model predictions
and detect out-of-distribution datasets.

• Building on our model interpretation with Information Bound,
we propose two regularization methods: Information Bound
regularization and Information Bound variance regularization.
Our experiments confirm the effectiveness of these methods
in enhancing model performance. The codes are available at
https://github.com/AISIGSJTU/IBBNN.

2 Related Work
2.1 Bayesian Neural Networks

Unlike deterministic deep neural networks, which obtain a point es-
timate of model parameters by optimizing a specific objective func-
tion, Bayesian neural networks [6, 7, 29] aim to find the posterior
distribution of the parameters instead of a point estimate. Variational
Inference [5, 6, 13, 18] and Markov Chain Monte Carlo [4, 8] are
two mainstream methods for training Bayesian neural networks. In
practice, Variational Inference scales better than the Markov Chain
Monte Carlo approach and is gaining popularity [21].

Bayesian neural networks have been applied in various domains,
such as computer vision and natural language processing. In com-
puter vision, they are commonly used to model the uncertainties
of predictions. Gustafsson, Fredrik K et al. applied Bayesian neural
networks to enhance model robustness in computer vision [22, 32].
In natural language processing, Xiao et al. [39] studied the bene-
fits of characterizing model and data uncertainties using Bayesian
neural networks. Bae et al. proposed detecting and avoiding out-of-
distribution data in semi-supervised learning [21]. Ebrahimi et al.

introduced a continual learning framework with Bayesian neural net-
works by retaining the most influential parameters and re-initializing
the rest [12]. Similarly, Li et al. employed Bayesian neural net-
works to enable learning from new tasks without forgetting previ-
ously learned tasks [25].

Despite these applications, there is limited work on the
information-theoretic exploration of Bayesian neural networks. Mu-
tual information has been shown to quantify epistemic uncertainty in
Bayesian neural networks [28], and Jae Oh Woo presented an analyt-
ical calculation method for the mutual information between model
parameters and the output [37].

2.2 Information Bottleneck Theory

The Information Bottleneck theory, first proposed by Tishby et al.
in 2000, aims to identify the minimum necessary information for
a given task [35]. This theory has been widely applied to analyze
and explain deep neural networks, providing insights into their in-
ner workings and performance [33, 36]. To incorporate the Informa-
tion Bottleneck model into a neural network, Alemi et al. introduced
a variational approximation [2]. This approximation allows the In-
formation Bottleneck to be used as a regularization term, leading to
improved generalization performance and robustness in the trained
models.

In recent years, researchers have continued to explore the applica-
tions of the Information Bottleneck theory in deep learning [31]. For
example, Peng et al. developed an efficient data selection method
based on the Information Bottleneck to accelerate the training pro-
cess of deep networks. Similarly, Xu et al. proposed selecting hard
examples with high mutual information of the input to enhance Ad-
versarial Training, improving the model’s ability to withstand adver-
sarial attacks [40]. Zhai et al. presented an adversarial Information
Bottleneck (AIB) method by introducing an adversarial regulariza-
tion term to estimate the information [43]. This approach combines
the Information Bottleneck with adversarial training, further expand-
ing its applicability in deep learning.

To some extent, our proposed Information Bound can be seen as a
natural extension of the Information Bottleneck methods applied to
Bayesian neural networks. Unlike other methods, which typically re-
quire specially designed inputs or modifications to the network struc-
ture, our approach does not necessitate any additional changes, mak-
ing it more practical and versatile for a wide range of applications.

2.3 Critical Periods in Neural Networks

In biology, critical periods refer to specific timeframes in the early
stages of postnatal development when sensory deficiencies might
lead to long-term skill impairment. Achille et al. demonstrated that
critical periods also exist in deep neural networks by using the Fisher
Information of the weight matrices to measure the effective connec-
tivity between layers [1]. They found that the Fisher information in-
creases in the initial period of training and then decreases for the
remainder of the training.

Furthermore, Golatkar et al. showed that weight decay and data
augmentation significantly affect the critical period, and there is also
a “critical period” for regularization [16]. On the other hand, Frankle
et al. highlighted the importance of the early phase in neural net-
work training [14]. Maennel et al. explained the critical period phe-
nomenon by showing that inactive ReLU units at later layers demon-
strate how early specialization occurs in the early layers during train-
ing [27].



Yan et al. revealed that the final accuracy of Federated Learning is
affected by the early phase of training, which verifies the existence of
a critical period in Federated Learning [41]. For applications, You et
al. discovered that the critical sub-network can be identified at a very
early critical stage [42]. De et al. introduced a new learning target for
curricularized learning in the early critical period in reinforcement
learning [10].

However, all mentioned above focus on the critical period in deter-
ministic neural networks, and it remains unknown whether the crit-
ical period exists in Bayesian neural network training. To the best
of our knowledge, our work is the first to demonstrate the critical
periods in Bayesian neural networks.

3 Information Bound in Bayesian Neural Networks
3.1 Bayesian Neural Networks with Variational

Inference

Suppose we have observations D = {(x1,y1), (x2,y2),
. . . }, Bayesian neural networks parameterized by W aim to model
the real posterior distribution P (W | D) by Bayesian theorem:

P (W | D) =
P (D | W)P (W)

P (D)
. (1)

Since the formula above is intractable in practice, Bayesian neu-
ral networks [6] trained with Variational Inference use a varia-
tional distribution Qθ(W) to approximate the real posterior proba-
bility P (W|D). The training process involves minimizing the Kull-
back–Leibler (KL) divergence between the variational distribution
and the true posterior distribution:

KL(Qθ(W)||P (W|D))) = −
∫

Qθ(W) log
P (W|D)

Qθ(W)
dW

= logP (D)−
∫

Qθ(W) log
P (W,D)

Qθ(W)
dW.

(2)

Since logP (D) is a constant for given observations D, minimiz-
ing the KL divergence is equivalent to minimizing the following ob-
jective function:

L = −
∫

Qθ(W) log
P (W,D)

Qθ(W)
dW

= −EW∼Qθ(W) logP (D | W)︸ ︷︷ ︸
Lp

+KL(P (W)||Qθ(W))︸ ︷︷ ︸
Lr

.
(3)

Note that −L is a lower bound of logP (D), thus L is usually called
the Evidence Lower Bound (ELBO) loss [5]. It can be divided into
two terms. Following previous work [44], the first term is directly
related to the predictions, and it is named the prediction loss Lp. The
second term can be seen as a regularization of the model parameters,
and it is named the regularization loss Lr .

The target of the training process is to find the parameters θ of the
variational distribution Qθ(W) to minimize L:

θ = argmin
θ

L. (4)

The prediction y of a given input x is obtained by multiple
stochastic forward passes through sampling K times from the prob-
ability distribution:

p (y|x,D) ≈ 1

K

K∑
k=1

p (y|x,Wk) ,Wk ∼ Qθ(W). (5)

3.2 Definition of Information Bound

A Bayesian neural network with L layers can be represented in the
form of multiple layers as below:

z0 = x, (6)

zl ∼ Pθl,zl−1(zi), ∀l ∈ 1, . . . L, (7)

y = zL, (8)

where x and y represent the input and the output of the Bayesian
neural network separately. Pθl corresponds to a random function of
the i-th layer in the Bayesian neural network, where θi represents
the trainable parameters. This means that for a fixed middle variable
zi−1 and parameter θl, the output zl is a random variable whose dis-
tribution is determined by zl−1 and θl. Therefore, each run is equiv-
alent to sampling from this distribution.

For a given Bayesian neural network with parameter θ, the hidden
variable zl in layer l only depends on the output of the previous layer
zl−1. Therefore, all hidden representations in the Bayesian neural
network generate a Markov chain. From the perspective of informa-
tion theory, we have

I(x, z1) > I(x, z2) > · · · > I(x, zL), (9)

where I(·, ·) represents the mutual information between two random
variables. Therefore, the mutual information I(x, zl) between input
x and the hidden representation zl represents the amount of informa-
tion in the output of the l-th layer.

In practice, calculating I(x, zl) analytically is infeasible because
the distribution P (x) is unknown. To address this issue, we propose
estimating an upper bound for I(x, zl) as a substitution. From the
definition of mutual information, we have

I(x, z) =

∫∫
p(z | x)p(x) log p(z | x)

p(z)
dxdz. (10)

As p(z) is intractable, it is impossible to calculate the integral. As
a substitution, we suppose q(z) is a knowable distribution, hence

I(x, z) =

∫∫
p(z | x)p(x) log p(z | x)

q(z)
dxdz

+

∫∫
p(z | x)p(x) log q(z)

p(z)
dxdz

=

∫
p(x)KL(p(z | x)∥q(z))dx−KL(p(z)∥q(z))

<

∫
p(x)KL(p(z | x)∥q(z))

= ExKL(p(z | x)∥q(z)).

(11)

Therefore, ExKL(p(z | x)∥q(z)) is an upper bound of I(x, z). We
name KL(p(z | x∥q(z))) as Information Bound in Bayesian neu-
ral networks. It depends on the input x and the hidden representation
variable distribution z, and can be used to estimate the amount of
information in Bayesian neural networks.

4 Model Interpretation with Information Bound
4.1 Information Bound Calculation

Bayesian neural networks model the probabilistic distribution of
p(zl|x) explicitly as the output of layer l. Consider a Bayesian linear
layer with input x ∈ Rn and output z ∈ Rm. Suppose its weight
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Figure 1. Trends of Information Bound and Accuracy during Bayesian
neural networks training. Best viewed in color.
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Figure 2. Trends of accuracy with varying accept rates according to
Information Bounds. It verifies the effectiveness of Information Bound as a

metric of model confidence. Best viewed in color.

matrix W is a random matrix with Wij ∼ N(Mij , A
2
ij), where

M,A ∈ Rm×n are matrices representing the expectation and stan-
dard error, respectively. Ignoring the bias term for the convenience
of our derivation, we have

zi =
∑
j

Wijxj . (12)

According to the adding rule of Gaussian variables, we have

p(zi|x) ∼ N (
∑
j

Mijxj ,
∑
j

A2
ijx

2
j ). (13)

In practice, we set the knowable distribution q(z) as a unit Gaus-
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Figure 3. Information Bounds of VGG models trained on CIFAR-10 and
CIFAR-100 with in-distribution data and out-of-distribution dataset. Best

viewed in color.
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Figure 4. Trends of accuracy of models trained with Information Bound
regularization with different hyperparameter λ1 in Equation (16. Best

viewed in color.

Figure 5. The five images with the lowest Information Bounds in
CIFAR-100, and their labels, predictions, and Information Bounds. The

model trained with Information Bound variance regularization keeps more
Information and predicts more accurately. Best viewed in color.
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Figure 6. Trends of the accuracy of models trained with Information
Bound variance regularization with different hyperparameter λ2 in Equation

(17). Best viewed in color.



Algorithm 1: Information Bound Calculation on a Bayesian
Layer

Input: Input x, Layer Weight W , Layer Bias b, Layer
operator f

Output: Information Bound IB for the Input x
1 Denote M , A as the expectation and standard deviation

matrix of W .
2 Denote µb, σb as the expectation and standard deviation of b.
3 µz = f(x,M, µb)

4 σz =
√

f(x2, A2, (σb)2)
5 IB = − log(σz) + 0.5(σz.pow(2) + µz.pow(2))− 0.5

sian distribution N (0, I). Therefore, the Information Bound can be
obtained by analytically calculating the KL divergence of two Gaus-
sian Distributions:

IB(x, z) = KL(p(z|x)∥q(z))

= −1

2

m∑
i=1

(
1 + log

∑
j

A2
ijx

2
j−

∑
j

A2
ijx

2
j −

∑
j

Mijxj

)
.

(14)

Similarly, for convolutional layers with a kernel matrix W which is
a random matrix with Wij ∼ N (Mij , A

2
ij), we have

p(z|x) ∼ N (conv(x,M), conv(x2, A2)). (15)

Therefore, the Information Bound with the output of convolutional
layers can be calculated accordingly. The procedure to calculate the
Informaton Bound in Bayesian neural networks is provided in Algo-
rithm 1.

4.2 Critical Periods in BNNs

In Section 2.3, we demonstrate that the critical period is a fundamen-
tal concept in traditional neural networks. The Information Bound
serves as a metric for estimating the amount of information contained
within Bayesian neural networks model. By monitoring the Informa-
tion Bound during training, we can assess the trend of information in
the model. Consequently, we can validate the presence of the Critical
Period in Bayesian Neural Networks training by incorporating the
Information Bound.

We examine the trends of Information Bound and accuracy dur-
ing the training of Bayesian LeNet [24] and Bayesian VGG [34]
on four widely-used datasets, namely Fashion-MNIST [38], KM-
NIST [9], CIFAR-10, and CIFAR-100 [23]. As depicted in Fig. 1,
the Information Bound experiences a sharp increase during the initial
phase of training. Subsequently, the Information Bound consistently
decreases throughout the remainder of the training process. Interest-
ingly, both training accuracy and test accuracy continue to rise during
the entire training period, despite the decline in Information Bound.
This observation suggests that the network initially acquires a sub-
stantial amount of information before gradually forgetting most of
it, ultimately retaining only the essential information relevant to the
task at hand.

4.3 Model Confidence Evaluation

In Bayesian neural networks, the Information Bound values for dif-
ferent inputs can vary significantly. This variation implies that a

model possesses more knowledge about an input image when the
corresponding Information Bound is large. Consequently, predictions
with higher Information Bounds are likely to be more accurate, while
those with lower Information Bounds tend to be incorrect. Our ex-
perimental results, as illustrated in Fig. 2 using the CIFAR-10 and
CIFAR-100 datasets, support this analysis.

To further demonstrate the relationship between Information
Bound and prediction accuracy, we present an experiment where
only a subset of predictions is accepted based on their correspond-
ing Information Bound values, while the remaining predictions are
rejected. As more predictions are retained, the overall accuracy de-
creases, confirming that predictions with lower Information Bound
values are more prone to being incorrect. This observation under-
scores the value of Information Bound as a reliable and meaningful
metric for estimating the confidence level of model predictions. By
leveraging the Information Bound metric, practitioners can gain in-
sights into the reliability of the predictions from Bayesian neural net-
works and make more informed decisions when using these models
in real-world applications.

4.4 Out-of-Distribution Dataset Detection

A low Information Bound indicates that the Bayesian neural network
model has limited understanding of the input data, suggesting that the
model may not be capturing the underlying patterns and relationships
within the data effectively. This property of Information Bound can
be leveraged to detect out-of-distribution datasets. For example, if a
dataset contains a large number of samples with Information Bounds
substantially lower than those observed in in-distribution samples, it
is highly probable that the dataset is out-of-distribution. This implies
that the model may not generalize well to this new dataset, as it is
likely to be significantly different from the data the model was trained
on.

The experimental results presented in Fig. 3 support our analy-
sis. We train two VGG models on the CIFAR-10 and CIFAR-100
datasets. For each model, we display the Information Bound of the
in-distribution datasets (CIFAR-10 and CIFAR-100) and the out-
of-distribution datasets (CIFAR-10, CIFAR-100, and SVHN [30]).
The results reveal that the distribution of Information Bound for
in-distribution datasets is higher than that of out-of-distribution
datasets. Furthermore, the Information Bound of SVHN is smaller
than that of the CIFAR datasets, indicating a more significant dif-
ference between the SVHN dataset and the CIFAR datasets than the
difference between the CIFAR datasets themselves. All experimental
results validate that Information Bound can be effectively utilized for
out-of-distribution dataset detection.

Table 1. Comparison of models trained with Information Bound
regularization and without Information Bound regularization. The mean

value and maximum deviation of three runs are reported.

Model Dataset Acc. w/o. IB Reg. Acc. w. IB Reg.

LeNet KMNIST 95.49± 0.26 95.73± 0.39
LeNet Fashion-MNIST 90.48± 0.37 90.87± 0.14
VGG CIFAR-10 91.03± 0.12 91.46± 0.20
VGG CIFAR-100 61.06± 0.86 62.13± 0.50



Table 2. Comparison on the Robustness of Models without Information Bound Regularization and with Information Bound Regularization. The mean value
and maximum deviation of three runs are reported.

Model Dataset Attack ℓ∞ norm Acc. w/o. IB Reg. (%) Acc. w. IB Reg. (%) ∆ (%)

LeNet KMNIST

/ 0 95.49± 0.26 95.73± 0.39 + 0.24

FGSM
1/255 94.61± 0.38 94.89± 0.20 + 0.27
2/255 93.46± 0.51 93.89± 0.03 + 0.43
4/255 90.49± 0.92 91.06± 0.61 + 0.57

PGD
1/255 94.62± 0.36 94.92± 0.12 + 0.30
2/255 93.37± 0.50 93.83± 0.12 + 0.46
4/255 89.88± 0.98 90.32± 0.60 + 0.44

LeNet Fashion-MNIST

/ 0 90.48± 0.37 90.87± 0.14 + 0.39

FGSM
1/255 82.49± 0.14 83.53± 0.19 + 1.04
2/255 73.06± 0.63 74.48± 0.88 + 1.42
4/255 57.67± 2.39 57.95± 2.25 + 0.28

PGD
1/255 82.04± 0.21 83.30± 0.23 + 1.26
2/255 69.39± 0.92 71.09± 1.10 + 1.70
4/255 41.92± 1.47 40.58± 1.76 −1.34

VGG CIFAR-10

/ 0 91.03± 0.12 91.46± 0.20 + 1.43

FGSM
1/255 64.17± 0.31 64.50± 0.99 + 0.33
2/255 39.53± 0.62 40.41± 0.44 + 0.88
4/255 20.00± 0.93 19.86± 0.28 −0.14

PGD
1/255 63.05± 0.51 63.36± 0.95 + 0.31
2/255 15.54± 0.28 16.08± 0.49 + 0.54
4/255 0.16± 0.06 0.40± 0.63 + 0.24

VGG CIFAR-100

/ 0 61.06± 0.86 62.13± 0.50 +1.07

FGSM
1/255 26.68± 1.83 28.29± 0.78 + 1.61
2/255 13.90± 1.08 14.71± 0.66 + 0.81
4/255 7.34± 0.63 7.40± 0.46 + 0.06

PGD
1/255 25.13± 1.68 26.48± 0.40 + 1.35
2/255 2.93± 0.45 3.14± 0.42 + 0.21
4/255 0.04± 0.01 0.05± 0.02 + 0.01

5 Regularization Methods based on Information
Bound

5.1 Information Bound Regularization

Definition. As shown in Sec. 4.2, the Bayesian neural networks mod-
els initially acquire a substantial amount of information but subse-
quently forgets most of it during the whole learning process, ulti-
mately retaining only the least necessary information. Inspired by
this observation and the information constraint method presented in
1, we propose to incorporate Information Bound as a regularization
term. This leads to the formulation of the following objective func-
tion, which we aim to minimize during the training of Bayesian Neu-
ral Networks:

L = Lp + Lr + λ1 ·
1

n

n∑
i=0

IB(Xi, Zi), (16)

where Lp and Lr are defined in Equation (3), and λ1 is a hyperpa-
rameter to control the ratio of Information Bound regularization. A
larger λ1 encourages the model to discard more useless information
while increasing the risk of discarding necessary information.
Ablation Study. In order to investigate the impact of different pa-
rameter settings for λ1, we conduct an analysis of the performance

of Bayesian LeNet and Bayesian VGG models trained using Infor-
mation Bound regularization. Our experiments are carried out on two
widely-used benchmark datasets, Fashion-MNIST and CIFAR-100.
The experimental results are depicted in Fig. 4, where we systemat-
ically vary the value of λ1 and observe its influence on the accuracy
of the trained models. The outcomes demonstrate that the proposed
Information Bound regularization maintains its effectiveness across
a broad spectrum of λ1 values. The insensitivity of our method to
the specific value of λ1 implies that it can be easily adopted in vari-
ous practical scenarios without the need for extensive hyperparame-
ter tuning, making it a valuable addition to the arsenal of tools avail-
able for training Bayesian neural networks models.
Performance Improvements. We present the classification accu-
racy in Table 1 to substantiate the claim that the Information Bound
regularization method significantly improves the performance of the
models. We employ Bayesian neural networks with LeNet and VGG
architectures, trained on a diverse set of datasets, including KM-
NIST, Fashion-MNIST, CIFAR-10, and CIFAR-100. This selection
of datasets ensures a comprehensive evaluation of the proposed ap-
proach across various domains and challenges. The comparative
analysis of the models trained with Information Bound regularization
and their original counterparts reveals that our method consistently
outperforms the latter in all scenarios. This observation confirms the



effectiveness of the proposed approach and highlights its generality.
Adversarial Robustness. According to the observations and anal-
ysis in previous work [5], the Variational Information Bottleneck
method makes models more robust to adversarial samples. Similarly,
Information Bound regularization improves the model’s adversar-
ial robustness because of the reduced redundant information. The
Fast Gradient Sign Method (FGSM) [17] is a related simple attack
method, and the Projected Gradient Descent method (PGD) [26] is a
more sophisticated and powerful adversarial attack method. We test
the adversarial robustness of original models and models trained with
Information Bound regularization on defending FGSM and PGD at-
tacks. To display the adversarial robustness more comprehensively,
we present the accuracy of models in defending against adversarial
attacks with ℓ∞ norms of 1/255, 2/255, and 4/255. The experimen-
tal results are presented in Table 2. Models trained with Information
Bound regularization are more robust in defending all the noises, fur-
ther verifying the generality of the proposed method.

Table 3. Comparison of models trained with Information Bound
variance regularization and without Information Bound variance

regularization. The mean value and maximum deviation of three runs are
reported.

Model Dataset Acc. w/o. IB Var. Reg. Acc. w. IB Var. Reg.

LeNet KMNIST 95.49± 0.26 95.67± 0.34
LeNet Fashion-MNIST 90.48± 0.37 90.43± 0.39
VGG CIFAR-10 91.03± 0.12 91.05± 0.10
VGG CIFAR-100 61.06± 0.86 63.13± 0.63

5.2 Information Bound Variance Regularization

Definition. As discussed in Sec. 4.3, Bayesian neural networks tend
to make incorrect predictions on examples characterized by lower
Information Bound values, primarily due to the limited information
retained by the models for such instances. Drawing inspiration from
these observations, we introduce Information Bound variance reg-
ularization, a novel approach designed to encourage the model to
acquire more knowledge about examples with low information con-
tent. To implement the Information Bound variance regularization,
we formulate the following objective function:

L = Lp + Lr + λ2 · V ari(IB(Xi, Zi)), (17)

where Lp and Lr are defined in Equation (3), V ari(·) means the
variance across a batch, and λ2 is a hyperparameter to control the
ratio of Information Bound variance regularization. The Information
Bound variance regularization method aims to promote a more bal-
anced learning process across all samples. By doing so, it ensures that
the model pays greater attention to the hard samples, which might
have been overlooked by the original model. As a result, the overall
performance of the model is enhanced, leading to a more robust and
accurate representation of the underlying data distribution.
Ablation Study. In this section, we aim to investigate the influence
of varying the parameter λ2 on the performance of Bayesian LeNet
and Bayesian VGG models trained using the Information Bound
variance regularization technique. To this end, we conduct experi-
ments on two benchmark datasets, Fashion-MNIST and CIFAR-100,
and present the accuracy results for different λ2 settings in Fig. 4.
Our findings reveal that the proposed Information Bound variance
regularization method consistently enhances the model performance
across a wide range of λ2 values, spanning from 10−6 to 101. This

observation suggests that our method exhibits robustness and is not
highly sensitive to the choice of the hyperparameter λ2. Among the
tested values, the model with λ2 = 10−4 demonstrates a marginally
superior performance compared to its counterparts. Consequently,
we adopt λ2 = 10−4 as the optimal hyperparameter setting for the
subsequent experiments in this paper.
Performance Improvements. We showcase the impact of Infor-
mation Bound variance regularization by presenting the five images
with the smallest amounts of Information Bound in the CIFAR-100
dataset on the Bayesian VGG model. The model trained without In-
formation Bound variance regularization misclassifies three of these
images. In contrast, the model trained with Information Bound vari-
ance regularization maintains a higher Information Bound on these
images and successfully classifies four of them. This result validates
our motivation and demonstrates that improving Information Bound
on complex examples enhances model performance.

To further verify the effectiveness of the Information Bound vari-
ance regularization method, we present the classification accuracy of
Bayesian neural networks with LeNet and VGG structures trained
on KMNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets.
The models trained with Information Bound variance regularization
outperform the original models, confirming the effectiveness and
generality of our proposed approach. This evidence highlights the
potential of Information Bound variance regularization as a valu-
able technique for improving the performance of Bayesian neural
networks across various tasks and datasets.

6 Conclusion

In this paper, we introduce a novel metric called Information
Bound, which aims to quantify the amount of information present
in Bayesian neural networks. This metric is applicable to both linear
and convolutional layers within these networks, and it can be calcu-
lated without the need for modifying the network structures or al-
tering the training processes. The introduction of Information Bound
allows us to make several key observations and discoveries. Firstly,
we observe and prove that the critical period phenomenon, which
has been previously identified in other learning systems, also exists
during the training of Bayesian neural networks. This finding has
significant implications for understanding the learning dynamics of
these networks. Secondly, we find that models tend to make incorrect
predictions on examples with lower Information Bound values. This
suggests that the Information Bound metric can also serve as an indi-
cator of the confidence level of model predictions, providing valuable
insights into the reliability of the model’s outputs. Building on these
observations, we propose two regularization methods that leverage
the Information Bound metric: Information Bound regularization and
Information Bound variance regularization. The Information Bound
regularization method enforces models to focus on learning the most
essential information, thereby improving their overall performance.
On the other hand, the Information Bound variance regularization
method encourages models to acquire more information on challeng-
ing examples with low Information Bound values, which can lead to
better generalization on difficult cases. Extensive experiments vali-
date our proposal and show that models trained with the two regu-
larization methods outperform the original models. The Information
Bound regularization method also improves the adversarial robust-
ness of models, which further expands their application scenarios.
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