How much Position Information Do Convolutional Neural Networks Encode? Published at ICLR 2020, spotlight

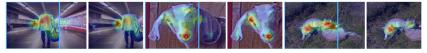
Md Amirul Islam, Sen Jia, Neil D. B. Bruce

Presenter: Jiaru Zhang

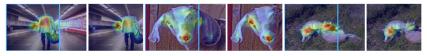
2020.5.16

• CNNs are considered to be spatially-agnostic. *Capsule* and *recurrent networks* are proposed to model spatial information.

- CNNs are considered to be spatially-agnostic. *Capsule* and *recurrent networks* are proposed to model spatial information.
- The regions determined to be most salient by CNNs tend to be near the center of an image.



- CNNs are considered to be spatially-agnostic. *Capsule* and *recurrent networks* are proposed to model spatial information.
- The regions determined to be most salient by CNNs tend to be near the center of an image.



• This paper examines the role of absolute position information and reveal where position information comes from.

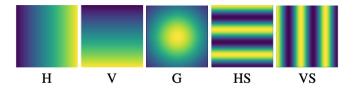
Problem Formulation

Given an input image $\mathcal{I}_m \in \mathbb{R}^{h \times w \times 3}$, our goal is to predict a gradient-like position information mask $\hat{f}_p \in \mathbb{R}^{h \times w}$ where each pixel value defines the absolute coordinates of an pixel from left \rightarrow right or top \rightarrow bottom.

Problem Formulation

Given an input image $\mathcal{I}_m \in \mathbb{R}^{h \times w \times 3}$, our goal is to predict a gradient-like position information mask $\hat{f}_p \in \mathbb{R}^{h \times w}$ where each pixel value defines the absolute coordinates of an pixel from left \rightarrow right or top \rightarrow bottom.

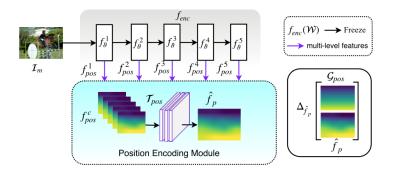
Here are some sample position maps:



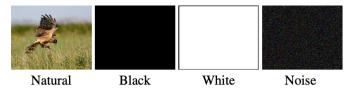
Position Encoding Network

Position Encoding Network (PosENet) consists of fenc and fpem.

- **Encoder** *f*_{enc}: ResNet and VGG based architectures without average pooling layer and the last layer, frozen when probing the encoding network.
- **Position Encoding Module** f_{pem} : It takes features from f_{enc} as input and generates the desired position map.



• **Datasets**: Natural images from DUT-S and PASCAL-S, and synthetic images.



• **Evaluation Metrics**: Spearmen Correlation (SPC) and Mean Absoute Error (MAE). Higher SPC and lower MAE mean better performance.

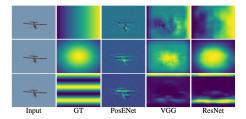
Models: VGG and ResNet based networks and PosENet without using any pretrained model.

- PosENet (VGG and ResNet) can extract position information from the pretrained CNN models.
- Training PosENet separately achieves much lower scores.

	Model	PASC	CAL-S	Bl	ack	W	hite	No	oise
	Woder	SPC	MAE	SPC	MAE	SPC	MAE	SPC	MAE
	PosENet	.012	.251	.0	.251	.0	.251	.001	.251
н	VGG	.742	.149	.751	.164	.873	.157	.591	.173
	ResNet	.933	.084	.987	.080	.994	.078	.973	.077
	PosENet	.131	.248	.0	.251	.0	.251	.053	.250
v	VGG	.816	.129	.846	.146	.927	.138	.771	.150
	ResNet	.951	.083	.978	.069	.979	.072	.968	.074
	PosENet	001	.233	.0	.186	.0	.186	034	.214
G	VGG	.814	.109	.842	.123	.898	.116	.762	.129
	ResNet	.936	.070	.953	.068	.964	.064	.971	.055
	PosENet	001	.712	055	.704	.0	.704	.023	.710
HS	VGG	.405	.556	.532	.583	.576	.574	.375	.573
	ResNet	.534	.528	.566	.518	.562	.515	.471	.530
	PosENet	.006	.723	.081	.709	.081	.709	.018	.714
VS	VGG	.374	.567	.538	.575	.437	.578	.526	.566
	ResNet	.520	.537	.574	.523	.593	.514	.523	.545

Models: VGG and ResNet based networks and PosENet without using any pretrained model.

- PosENet (VGG and ResNet) can extract position information from the pretrained CNN models.
- Training PosENet separately achieves much lower scores.



The PosENet used has only one convolutional layer with a kernel size of 3×3 . What about changing it?

- Applying more layers in the PosENet can improve the readout of position information for all the networks.
- A reason could be that the effective receptive field becomes larger.

	Lovers	Posl	ENet	VGG		
	Layers 1 Layer 2 Layers 3 Layers 1 Layer 2 Layers 1 Layer 2 Layers 3 Layers 3 Layers 3 Layers	SPC	MAE	SPC	MAE	
	1 Layer	.012	.251	.742	.149	
Н	$2 {\tt Layers}$.056	.250	.797	.128	
	$3 { t Layers}$.055	.250	.830	.117	
	1 Layer	001	.233	.814	.109	
G	$2 {\tt Layers}$.067	.187	.828	.105	
	$3 {\tt Layers}$.126	.186	.835	.104	
	1 Layer	001	.712	.405	.556	
HS	$2 {\tt Layers}$	006	.628	.483	.538	
	$3 {\tt Layers}$.003	.628	.491	.540	

(a)

The PosENet used has only one convolutional layer with a kernel size of 3×3 . What about changing it?

- Larger kernel sizes are likely to capture more position information compared to smaller sizes.
- This also supports that a larger receptive field can better resolve position information.

	Kernel 1×1 3×3 7×7 1×1 3×3 7×7 1×1 3×3 7×7	Posl	ENet	VGG		
		SPC	MAE	SPC	MAE	
	1×1	.013	.251	.542	.196	
Н	3×3	.012	.251	.742	.149	
	7×7	.060	.250	.828	.120	
	1×1	.017	.188	.724	.127	
G	3×3	001	.233	.814	.109	
	7×7	.068	.187	.816	.111	
	1×1	004	.628	.317	.576	
HS	3×3	001	.723	.405	.556	
	7×7	.002	.628	.487	.532	

(b)

It is also interesting to see whether position information is equally distributed across the layers.

- VGG based PosENet with top *f*₅^{pos} features achieves higher performance compared to bottom features.
- This is partially a result of more feature maps, 512 vs. 64.
- f_5^{pos} achieves better results than f_4^{pos} , suggests that the deeper feature contains more position information.

	Method	f_{pos}^1	f_{pos}^2	f_{pos}^3	f_{pos}^4	f_{pos}^5	SPC	MAE
		√					.101	.249
			~				.344	.225
н	VGG			\checkmark			.472	.203
					√		.610	.181
						\checkmark	.657	.177
		✓	\checkmark	~	~	\checkmark	.742	.149
		√					.241	.182
			~				.404	.168
G	VGG			\checkmark			.588	.146
					~		.653	.138
						\checkmark	.693	.135
		√	\checkmark	\checkmark	\checkmark	\checkmark	.814	.109

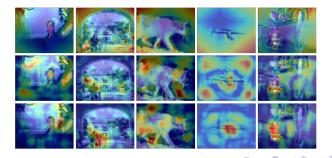
Where does Position Information Come from?

- The authors believe that the padding near the border delivers position information to learn.
- The VGG16 model without zero-padding achieves much lower performance than the default setting (padding=1) on the natural images.
- PosENet with larger padding achieves higher performance.
- This is also the reason why padding is not used in previous experiments.

Model		H		G	HS	
	SPC	MAE	SPC	MAE	SPC	MAE
PosENet	.012	.251	001	.233	001	.712
PosENet with padding=1	.274	.239	.205	.184	.148	.608
PosENet with <i>padding=2</i>	.397	.223	.380	.177	.214	.595
VGG16	.742	.149	.814	.109	.405	.556
VGG16 w/o. padding	.381	.223	.359	.174	.011	.628

Case Study

- The semantics within an image may affect the position map as shown in Page 6.
- The heatmaps of PosENet have larger content loss around the corners, and the heatmaps of VGG and ResNet correlate more with the semantic content.
- This visualization can be used to show which regions a model focuses on, especially in the case of ResNet.



Zero-Padding Driven Position Information

- Saliency Detection and Semantic Segmentation are two position-dependent tasks.
- VGG without padding achieves much worse results on both tasks, which further validates the findings that zero-padding is the key source of position information.

Model	EC	CSSD	PAS	CAL-S	DUT	OMRON		Model	mIoU (%)
Wodel	Fm	MAE	Fm	MAE	Fm	MAE			
VGG w/o padding	.36	.48	.32	.48	.25	.48	:	VGG w/o padding VGG	12.3
VGG	.78	.17	.66	.21	.63	.18			23.1
(a)							•	(b)	

Zero-Padding Driven Position Information

• CNN models pretrained on these two tasks can learn more position information than classification task.

	Model	PASCAL-S		BLACK		WHITE		NOISE	
	WIGHEI	SPC	MAE	SPC	MAE	SPC	MAE	SPC	MAE
	VGG	.742	.149	.751	.164	.873	.157	.591	.173
Н	VGG-SOD	.969	.055	.857	.099	.938	.087	.965	.060
	VGG-SS	.982	.038	.990	.030	.985	.032	.985	.033
	VGG	.814	.109	.842	.123	.898	.116	.762	.129
G	VGG-SOD	.948	.067	.904	.086	.907	.085	.912	.077
	VGG-SS	.971	.055	.984	.050	.989	.046	.982	.051
	VGG	.405	.556	.532	.583	.576	.574	.375	.573
HS	VGG-SOD	.667	.476	.699	.506	.709	.482	.668	.489
	VGG-SS	.810	.430	.802	.426	.810	.426	.789	.428

- This paper shows that absolute position information is implicitly encoded in convolutional neural networks.
- These results demonstrate a fundamental property of CNNs that was unknown to date.

Comments:

- The idea is natural and the experiments are not difficult because there is no comparison with sota methods.
- Maybe it is feasible to explore more on it, e.g. doing more theoretical analysis.