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Background



Bayesian Neural Networks

e Bayesian neural network is a particular neural network where parameters
are represented as probabilistic distributions.
e It is widely used because of its uncertainty and interpretability.

Figure source: Javier Antoran. Understanding uncertainty in bayesian neural networks. Masters thesis, University of Cambridge,
2019.
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probability for each of the classes.
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e High H.: [0.3, 0.3, 0.4]
e Low H,: [0.01, 0.01, 0.98]
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Uncertainties

e Consider a 3-classification problem, where the model outputs a
probability for each of the classes.

e The vanilla neural network can model the aleatoric uncertainty H,:

High H,: [0.3, 0.3, 0.4]
Low H.: [0.01, 0.01, 0.98]

e A Bayesian neural network outputs different results in different runs.
Hence, it can model the epistemic uncertainty H. additionally :

High H, and high He: [0.3, 0.3, 0.4], [0.2, 0.5, 0.3], [0.6, 0.2, 0.2], ...
High H, but low He: [0.3, 0.3, 0.4], [0.3, 0.32, 0.38], [0.27, 0.3, 0.43], ...
Low H, but high He: [0.01, 0.01, 0.98], [0.98, 0.01, 0.01], [0.01, 0.98,
0.01], ...

Low H, and low He: [0.01, 0.01, 0.98], [0.01, 0.02, 0.97], [0.02, 0.91,
0.97], ...



Examples of uncertainty modeling in CV

e Modeling both H, and H. gives a notable improvement in segmentation

accuracy:
CamVid | IoU NYUV2 40-class | Accuracy | IoU
SegNet [28] 46.4
FCN-8 [29] 57.0 SegNet [28] 66.1 23.6
DeepLab-LFOV [24] 61.6 FCN-8 [29] 61.8 31.6
g?jyif‘a'ﬁ ?;g]Nel [22] gg; Bayesian SegNet [22] 68.0 324
ations .. H
Dilations + FSO [31] 661 Eigen and Fergus [32] 65.6 34.1
DenseNet [20] 66.9 This work:
This work: DeepLabLargeFOV 70.1 36.5
DenseNet (Our Implementation) | 67.1 + Aleatoric Uncertainty 70.4 37.1
+ Aleatoric Uncertainty 67.4 + Epistemic Uncertainty 70.2 36.7
+ Bpistemic Uncertainty 67.2 + Aleatoric & Epistemic 70.6 373
+ Aleatoric & Epistemic 67.5
(a) CamVid dataset for road scene segmentation. (b) NYUv2 40-class dataset for indoor scenes.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer vision? In NeurlPS, 2017,



Examples of uncertainty modeling in NLP

e Modeling both H, (DU) and H. (MU) also gives a notable improvement
in sentiment analysis tasks:

Model Yelp 2013 Yelp 2014 Yelp 2015 IMDB
(RGS MSE)

Baseline 0.71 0.72 0.72 3.62
Baseline + MU 0.57 0.55 0.55 3.20
Baseline + DU 0.84 0.75 0.73 3.74
Baseline + both 0.57 0.54 0.53 3.13
Relative Improvement (%) 19.7 25.0 26.4 13.5

Yijun Xiao and William Yang Wang. Quantifying uncertainties in natural language processing tasks. In AAAI, 2019



Adversarial Robustness

e Neural networks have been found vulnerable to adversarial attacks.

o A small perturbation which is undetectable for human can cause a large
change of the output of a network.

@ sign(VzJ (8, z,y))

“panda” “nematode”
57.7% confidence 8.2% confidence 99.3 % confidence

e In this paper we focus on adversarial defense, i.e., how to defend the
adversarial attacks.

Figure source: lan J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples
ICLR, 2015

In



Adversarial Robustness on Bayesian Neural Networks

Bayesian neural networks are effective in detecting adversarial samples *
2

Adversarial training has been used in Bayesian neural networks to improve
model robustness 3.

Idealized Bayesian neural networks can even avoid adversarial attacks

L]
H 4 5
under some settings ” °.
e However, there is still a large space for further improvement.
L Yingzhen Li and Yarin Gal. Dropout inference in bayesian neural networks with alpha-divergences. In ICML, 2017.
2 Lewis Smith and Yarin Gal. Understanding measures of uncertainty for adversarial example detection. In Amir Globerson and
Ricardo Silva, editors, UAI, 2018
3 Xuanging Liu, Yao Li, Chongruo Wu, and Cho-Jui Hsieh. Adv-BNN: Improved adversarial defense through robust bayesian neural
network. In ICLR, 2019.
4 Yarin Gal and Lewis Smith. Sufficient conditions for idealised models to have no adversarial examples: a theoretical and empirical
study with bayesian neural networks. arXiv preprint arXiv:1806.00667, 2018.
5

Ginevra Carbone, Matthew Wicker, Luca Laurenti, Andrea Patane, Luca Bortolussi, and Guido Sanguinetti. Robustness of bayesian
neural networks to gradient-based attacks. In NeurlPS, 2020
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Lipschitz Continuity

Consider a function f(x) mapping x into y.

We hope it is insensitive to the perturbation of the input. For a perturbation

£, we want

1 (x+ &) = ()l (1)

to be small. So we introduce the Lipschitz Continuity here:

For a function f, if ILip(f), Vx, &, we have
x4+ &) = FOIl < Lip(F) - €], (2)

then f is Lipschitz continuous or satisfies Lipschitz constraint.

11



Lipschitz Constraint in Neural Networks

e We have seen insensitivity means Lipschitz continuity. Additionally, we
hope Lip(f) as small as possible for a model f,,.

o Consider a single layer in a neural network:
fw(x) = f(Wx + b), (3)

where W and b are parameter matrix and vector, f(-) is the activation
function.

e If £ is small enough,

Vx4 ) — ()l = [F(W(x+€) + b) — F(Wx + )| (4)
or

- | gng 5)

< Lip(F)- [l ()

e For popular activation functions (e.g. relu, sigmoid, tanh, ...), H%H are

all bounded.

12



Lipschitz Constraint in Neural Networks

e So we only need to maintain

IWEIl < Lip(f) - [i£]l. ()

and answer the question: What is the smallest Lip(f) ?

e Now we introduce the definition of Spectral Norm:

Definition (Spectral Norm)

For a matrix W, we define its Spectral Norm as

[Well
W2 = max . 8
IWll2 = ma Tl (8)
Note that it is a generalization of L norm for vectors.
o Now we can write the formula (7) as
[WEI < Wl - lI€]]- 9)

13



Discussion

e The Lipschitz constraint is popularly used in deep learning to
improvement the robustness and generality of models ® 7 &,

e However, it cannot be used in Bayesian neural networks because of the
parameters in Bayesian neural networks are probabilistic distributions.

In a word, this work answers the following questions:

o How to apply Lipschitz constraint in Bayesian neural networks to
improve the adversarial robustness?

o How does the method influence the uncertainties?

6 Yoshida, Yuichi and Miyato, Takeru. Spectral norm regularization for improving the generalizability of deep learning. arXiv preprint
arXiv:1705.10941, 2017

v Gouk, H., Frank, E., Pfahringer, B., and Cree, M. Regularisation of neural networks by enforcing lipschitz continuity. arXiv preprint
arXiv:1804.04368, 2018

8 Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spectral normalization for generative adversarial networks. In ICLR, 2018
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Spectral Expectation Bound Regularization



A Theoretical Point of Penetration

e The idea of restriction on ||W/||> can be naturally extended to Bayesian
neural networks.

e It is proved that the model will become more robust if E||W/||> of each
layer get restricted.

Consider function fiw(x) = f(Wx + b), where the activation function
f(-) is Lipschitz continuous with Lipschitz constant Lip(f). For any
perturbation § with norm ||£||, we have

Bw [[fw(x + &) — fw(x)|| < Lip(f) - E[ W]z - [[£]l. (10)
where ||W||> represents the spectral norm of matrix W, and it is de-
fined as

Wl
Wl = — 11
W2 N (11)

15



Naive method to restrict E| W/||»

How to restrict E||W/||» in practice? A naive method:

L
. A 1) 2
minimize L+ ) ;(EHW l2)" (12)

The expectation is estimated by Monte Carlo sampling (K times). The
spectral norm is calculated by Power Iteration (N iterations) method.

The time complexity is O(KN).

16



Faster Estimation

A substitution: Estimation of its upper bound.

Consider a Gaussian random matrix W € R™*", where W;; ~ N(Mj, A7)
with M, A € R™". Suppose G € R™" s a zero-mean Gaussian random
matrix with the same variance, i.e., Gy ~ N(0, A}). We have

BIWle < [M]-+ ¢ (max 14, | + max 14,1 + Emax|Gil) . (13)

where c is a constant independent of W.

The estimation of the upper bound is faster: O(K + N)
Denote Ls as half of the square of the upper bound of E||W/||2 in each layer.
Add it into the loss function:
minimize £+ X\ - Ls. (14)
W

The method is named as Spectral Expectation Bound Regularization (SEBR). .



Verifications

e The upper bounds reflect the variation trends of real values accurately.

Estimation Bias
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Figure 1. The variation trends of both Monte Carlo estimation and the estimated upper bound of E[|W||2 in a 3-layer Bayesian neural
network during training. Best viewed in color.
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Verifications

e The upper bounds reflect the variation trends of real values accurately.
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Figure 1. The variation trends of both Monte Carlo estimation and the estimated upper bound of E[|W||2 in a 3-layer Bayesian neural
network during training. Best viewed in color.

e The real values get decreased bacause of the usage of SEBR.
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e The time costs get reduced compared with the naive method.

Method Avg. time per epoch
Reg. on E||W||2 1654.8 (s)
SEBR 410.5 (s)

Table 1. Time cost comparison between SEBR and the direct reg-
ularization on E||W||,.

19
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Influence on Uncertainty

The epistemic uncertainty of the model output gets reduced by SEBR:

Consider a Bayesian neural network with only a linear layer fiy(x) =
Wx + b, where x € R", W € R™". Denote the epistemic uncertainty
of the output after one step gradient descent without SEBR as H., and
the epistemic uncertainty after one step gradient descent with SEBR as
H.. With sufficient sample times, we have

H. < H.. (15)

It verifies the robustness of the model from another point of view.

20



Verification on Uncertainty Decrease

Experiments on the verification of the decrease of the output uncertainty.

5000
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(a) Aleatoric Uncertainty (b) Epistemic Uncertainty

Figure 4. Uncertainties measured by Bayesian neural networks
on data with adversarial noises. Models trained with SEBR have
lower uncertainty on the predictions. Best viewed in color.
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Improvement on Adversarial Robustness

Experiments on multiple structures (i.e., MLP and CNN), multiple datasets
(MNIST and Fashion-MNIST), and multiple attacks (i.e., FGSM and PGD)
verify the efficiency of the proposed method.

Model  Dataset Attack Noise foonmorm Acc. wio. SEBR (%) Acc. w. SEBR (%) AAvg. Improv. (%)

/ 0 0 97.05 £ 0.38 96.83 +0.48 —0.22

. 83.83 £ 0.51 X
Bayesian FGSM medium  0.16 8.97+0.28 +3472
MLp  MNIST 5.06 + 0.21
small 004 81.99 £ 1.05 83.67+0.67 +168
PGD medium 016 4204084 9544282 +534
large 0.22 1554035 3184152 +163
/ 0 0 98.88+0.27 98.70 +0.04 —0.18
small 004 85.64 +2.52 86.14+£2.76 +0.50
Bayesian FGSM medium  0.08 55.98 £ 4.40 60.27 £ 8.65 +429
CNN  MNIST 18.16 £ 0.57 2255£11.23 +439
small 0.04 82.91 £2.63 85.10 £2.96 +2.19
PGD medium 008 36.53 £5.85 49.20£10.75 +12.67
large 0.14 9.88 £ 2.02 12.33 £5.31
/ 0 0 84.38 £0.37 78.75+£0.83
small  0.04 60.96 £ 0.24 62.06£1.15
Bayesian Fashion FOSM medium 0.1 2420 £1.16 3165+1.25
MLP  MNIST large 02 1.99 +0.57 459%0.75
small 004 59.86 £ 0.34 6180+£113
PGD medium 0.1 19.18 4+ 1.01 20.67+1.22
large 0.2 0.44 £0.14 2.71 £0.60
/ 0 0 87.45 £ 0.57 8483+0.33
small 0,04 40824186 1603422
Bayesian  Fashion i 15.89 % 0.97 18.96 % 5.00
CNN  MNIST 10244031 11.97 +3.95
small 004 3281£1.70 39924325
PGD  medium  0.06 15.03 4+ 2.03 20,87+ 4.00
large 0.08 5.62+0.73 9.27+1.62

Table 2. Comparison on the Robustness of Models without SEBR and with SEBR. The mean value and maximum deviation of three runs
are reported.
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Improvement on Adversarial Robustness

Experiments on more complex structures (i.e., VGG), more complex datasets
(CIFAR-10/100), and multiple attacks (i.e., FGSM and PGD) further verify
the efficiency of the proposed method.

Dataset Attack noise £, w/o. SEBR w. SEBR

A 0 ____ 9165 __ 9209
0.005 58.65 65.74
FGSM  0.01 42.70 54.78
CIFAR10 0.02 32.73 43.76
0.005 46.33 50.40
PGD 0.0l 9.73 16.11
0.02 2.31 295
d 0____6694 6656
0.002 45.96 47.67
FGSM 0.0l 17.08 21.18
CIFAR100 0.02 12.52 1597
0.002 4472 4685
PGD 0.1 2.91 5.04
0.02 0.95 1.95

Table S1. Experiments on Bayesian CNN with VGG architecture.
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Discussion

There are some future directions about this work:

e Apply Lipschitz constraint on other kinds of neural networks.
o Apply the SEBR method in practical applications.

e Explore more methods to enhance the adversarial robustness of Bayesian
neural networks.
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