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Background

e Adversarial attacks: Small, potentially imperceptible
perturbations of test inputs can lead to misclassifications of

NNSs.

e Many attack strategies are based on identifying directions
of high variabillity in the loss function by evaluating
gradients.

e This paper shows a remarkable property of BNNs: The
gradients of the expected loss function of a BNN vanish in a
suitably defined large data limit.
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Background

Bayesian Neural Networks and Adversarial Attacks

e The predictions of BNNs are obtained by

f(X*lD) :<f( p(w|D) Zf X Wl Wj Np(W|D)

e |t can be seen as an ensemble of NNs.

e One of the most popular adversarial attack is Fast Gradient Sign Method (FGSM):

% ~ x + esgn ((VxL(x, W)>p(w|D)) ~ X + €sgn (Z V< L(x, wz))

1=1



Adversarial Robusthess of BNN

e Key Theorem:

Theorem 1. Let f(x,w) be a fully trained overparametrized BNN on a prediction problem with

data manifold M p C R? and posterior weight distribution p(w|D). Assuming Mp € C*™ almost
everywhere, in the large data limit we have a.e. on M p

(<V><L(Xa W)>p(WID)) = 0. (3)



Adversarial Robusthess of BNN

e The Key Theorem:

Theorem 1. Let f(x,w) be a fully trained overparametrized BNN on a prediction problem with

data manifold M p C R? and posterior weight distribution p(w|D). Assuming Mp € C™ almost
everywhere, in the large data limit we have a.e. on M p

((VxL(x,W))pw|D)) = O. (3)

e Any gradient-based attack will be ineffective against a BNN in the limit.
e Necessary premise:
e Fully trained BNN, i.e., it has enough expressive power to fit any function

e |large data limit, i.e., the training data are enough to represent the data manifold
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Proof

e Lemma

Lemma 1. Let f(x,w) be a fully trained overparametrized NN on a prediction problem with a.e.

smooth data manifold Mp C R% Let x* € Mp s.t. By(x*,€) C Mp, with By(x*,¢) the d-
dimensional ball centred at x* of radius € for some ¢ > 0. Then f(x, W) is robust to gradient-based
attacks at x* of strength < ¢ (i.e. restricted in By(x*, €)).



Proof

e Lemma

Lemma 1. Let f(x,w) be a fully trained overparametrized NN on a prediction problem with a.e.

smooth data manifold Mp C R% Let x* € Mp s.t. By(x*,€) C Mp, with By(x*,¢) the d-
dimensional ball centred at x* of radius € for some ¢ > 0. Then f(x, W) is robust to gradient-based

attacks at x* of strength < ¢ (i.e. restricted in By(x*, €)).

e The key observation for proving Lemma 1 is:

e QOver-parametrised NNs provably achieve zero loss on the whole data manifold,
hence the function f would be locally constant at x™.



Proof

e Corollary 1

Corollary 1. Let f(x,w) be a fully trained overparametrized NN on a prediction problem with data

manifold M p C R® smooth a.e. (where the measure is given by the data distribution p(D)). If f is
vulnerable to gradient-based attacks at t* € M p in the infinite data limit, then a.s. dim (Mp) < d
in a neighbourhood of ™.

e |t had been already empirically noticed that adversarial perturbations often arise In
directions which are normal to the data manifold.

e A consequence of Corollary 1 is:

VxL(x,w) =V xL(x, W)



Proof

* Recall: we want to prove V4 (L(x,W)),w|p) = 0.

e We only need to prove the following symmetry:

Lemma 2. Let f(x,w) be a fully trained overparametrized NN on a prediction problem on data

manifold M p C R? a.e. smooth. Let X € M p to be attacked and let the normal gradient at X be
Vw(X) = V.1xL(x,w) be different from zero. Then, in the infinite data limit and for almost all X,

there exists a set of weights w' such that
f(x,w') = f(x,w) a.e. in Mp, 4)
VisL(Fx,wW) = —vg(X). 5

e The proof of this lemma rests on constructing a function satisfying (4) and (5).



EXperiments

e The magnitude of the expectation of the gradient shrinks as we increase the
network’s parameters and the number of training inputs.
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EXperiments

e The expected loss gradients of BNNs vanish when increasing the number of
samples.

[(VL(x, w))w|= =0.574  |(VL(x, w))y|= =0.045  |(VL(x, w))w|. =0.011 [(ViL(x, W))y|.. = 4.730 [(ViL(x, W))y|.. = 0.961 [(ViL(x, W))y|. = 0.147
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EXperiments

e The random attack outperforms the gradient-based attacks.

e The vanishing behaviour of the gradient makes FGSM and PGD attacks
ineffective.

Dataset/Method | Rand | FGSM | PGD

MNIST/HMC 0.850 | 0.960 | 0.970
MNIST/VI 0.956 | 0.936 | 0.938
Fashion/HMC | 0.812 | 0.848 | 0.826
Fashion/VI 0.744 | 0.834 | 0.916
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EXperiments

e The random attack outperforms the gradient-based attacks.

e The vanishing behaviour of the gradient makes FGSM and PGD attacks

ineffective.
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EXperiments

Robustness Accuracy Analysis

e 1000 different NNs and BNNs

(€= 0.25)

(€= 0.25) | (a) (b)

1.0 wrps wrrvmn -_—_,——#. . gt

14

] ] ] oo ?
are tested in this experiment RIS AR
p [ 8 N -‘:1.":":-."' -.‘.; : """ - 0.8 I
c 08 - ) SRR SR L ) | I
o . ety MU .
8 ' J ):.-:' ':'. :’." ;’ 1
= 0.6 . e A} < 2. = o - = =
E e ¥ -.-I._"' . SGD E
© 0.4 e . -
. £ RN ¥ m - I =
o etric: 1 - the average 3 ek |
n n 0.2 - TYY 0.2 I
LA
’ e 20 ¥ . v
n n - 0.0 e’ LA .
difference In the softmax |
256 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 64.0 128.0 256.0 512.0 1024.0 080 085 090 095 1.00
(€= 0.025*, 0.0025**) (g = 0.15%, 0.0025**)
] | 1.0
1.0 SGD** 1.0 e
SGD“
rediction | -
p | Q ‘e 0.9 ~ -
8 ~ d | e
= 0.8 = w = R T & »
S B siin I . TR e °
5 - Ha 2
x l ’ i '.i.. .
h I . . h g " ] I 0-4 vt g ;
® & 0.4 . : X 7
[he larger it is, the more o . = s S
w 0.2 LY
' 0.4 Pk &
n ~— 0.2 .
robust the model Is
n 512 1024 1536 2048 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 64.0 128.0 256.0 512.0 1024.0 0065 070 0.75 0.80 0.85 0.90 0.95 1.00
Number of Neurons Accuracy Model width Accuracy



o

o

-~ 0.8

Q

o

E 0.6

(-]

ot
0.4

£

=

(o]

v o.2

]

F

0.2

1 - Softmax Difference

512

1024 1536
Number of Neurons

2048

EXperiments

Robustness Accuracy Analysis
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o \With the increase of model
size and accuracy, the
robustness of BNNSs increase.

e This trend is fully reversed for
normal NNs trained with SGD.



EXperiments

Robustness Accuracy Analysis

e This trend iIs less obvious on
BNNSs trained with VI.
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Conclusion

e This paper shows that BNNs can evade a broad class of adversarial
attacks.

e |t also has some limitations:

e Performing Bayesian inference in large non-linear models is extremely
challenging.

e Theoretical results hold in a thermodynamic limit which is never realized
In practice.

e We have focused on two attack strategies which directly utilize
gradients.
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