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Introduction

e Continual learning: Sequentially learning tasks without forgetting
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o What not to forget? Important parameters.

e How not to forget? Minimize the change in important parameters.



Importance vs. Uncertainty

How do we define importance?
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The more uncertain a parameter is, the more learnable it can be.



Uncertainty-guided Continual Learning with Bayesian NNs (UCB)

Each parameter is modeled by mean w and variance p.

Learning rate regularization:
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where (2 represents the importance.
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are the best settings empirically found. Here o is the standard devia-
tion.
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UCB using weight pruning (UCB-P)

o Use the signal-to-noise ratio (SNR) as the importance for each
parameter:

£2=5NR = |u|/o (5)

o After training on a task, we

e Freeze the important parameters.
e Prune the unimportant parameters.
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e Pros: Recovering pre-pruning performance.

e Cons: Saving masks per task; Require task information at test time.



Results: Sequence of 8 datasets

Datasets: FaceScrub, MNIST, CIFAR100, NotMNIST, SVHN, CIFARI10,
TrafficSigns, and FashionMNIST .
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Results: Sequence of 8 datasets

Datasets: FaceScrub, MNIST, CIFAR100, NotMNIST, SVHN, CIFAR10,
TrafficSigns, and FashionMNIST .
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Results: Task-free

UCB can be used even if the task information is not given at test time.

FC1
43.1 FC2 Test time
ACC (Multi Head) CHN ¢ [ task description
84.0
FC3
476
Generalized ACC (Single Head)
76.8

Test time
CNN FC D task description

BBB-Finetune ucs



Conclusion

e UCB regularizes the learning rate with the uncertainty measured by
Bayesian NNs.

The more uncertain the parameter is, the higher the learning rate should
be.

e UCB can be task free.

State-of-the-art results on image classification benchmarks.



