Walk through Deep Transfer Learning

Jiaru Zhang 12.7.2018

Contents

Other Methods

Outlook on Future

Introduction Transfer Learning

The application of skills, knowledge, and/or attitudes that were learned in one situation to another **learning** situation (Perkins, 1992)

Transfer Learning

- Big data
- Powerful computation
- New algorithmic techniques

.

• Mature software packages and architectures

Introduction Why is deep learning so significant?

Feature Engineering

End-to-end learning through gradient descent

Introduction Comparison

How transferable are features in deep neural networks? [1]

[1] Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. How transferable are features in deep neural networks? In NeurIPS, 2014

- BnB: First n layers are copied from base B and frozen. Others are randomly initialized.
- AnB: First n layers are copied from base A and frozen. Others are randomly initialized.
- BnB+: BnB but all layers trainable.
- AnB+: AnB but all layers trainable.

How transferable are features in deep neural networks?

Layer \boldsymbol{n} at which network is chopped and retrained

Conclusion of the paper:

- The first 3 layers are general.
- Fine-tune improves performance notably.
- By Fine-tuning data from different domain can be used.
- Deep transfer networks are better than randomly initialized ones.

How transferable are features in deep neural networks?

Contents

Other Methods

Outlook on Future

Core Methods Why we need domain transfer methods?

	Train set		Test set	
Source domain	\mathcal{X}_{S}	y_s	N	Y
Target domain	x_T	y_T	x_T	?

In fine-tune method, y_T is needed!

Domain Adaptive Neural Networks for Object Detection [2]

Maximum Mean Discrepancy (MMD):

[2] Muhammad Ghifary, W. Bastiaan Kleijn, and Mengjie Zhang. Domain Adaptive Neural Networks for Object Recognition. In PRICAI, 2014

Core Methods Domain Adaptive Neural Networks for Object Detection

Joint loss function:

$$J_{\rm DaNN} = J_{\rm NNs} + \gamma \mathcal{M} \mathcal{M} \mathcal{D}_e^2(\mathbf{q}_s, \mathbf{\bar{q}}_t),$$

 $\mathbf{q}_s = \mathbf{W}_1^\top \mathbf{x}_s + \mathbf{b}, \ \mathbf{\bar{q}}_t = \mathbf{W}_1^\top \mathbf{x}_t + \mathbf{b}$

Core Methods Deep Domain Confusion: Maximizing for Domain Invariance [3]

[3] Tzeng E, Hoffman J, Zhang N, et al. Deep domain confusion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474, 2014

Improvement: Deeper network (Alexnet).

Core Methods Learning Transferable Features with Deep Adaption Networks [4]

Multiple Kernel variant of Maximum Mean Discrepancy (MMD):

$$\mathcal{MMD}_{e}(\mathbf{x}_{s}, \mathbf{x}_{t}) = \left\| \frac{1}{n_{s}} \sum_{i=1}^{n_{s}} \phi(\mathbf{x}_{s}^{(i)}) - \frac{1}{n_{t}} \sum_{j=1}^{n_{t}} \phi(\mathbf{x}_{t}^{(j)}) \right\|_{\mathcal{H}}$$

$$= \left(\frac{1}{n_{s}^{2}} \sum_{i=1}^{n_{s}} \sum_{j=1}^{n_{s}} k(\mathbf{x}_{s}^{(i)}, \mathbf{x}_{s}^{(j)}) + \frac{1}{n_{t}^{2}} \sum_{i=1}^{n_{t}} \sum_{j=1}^{n_{t}} k(\mathbf{x}_{t}^{(i)}, \mathbf{x}_{t}^{(j)}) \right)$$

$$\mathcal{K} := \left\{ k : k = \sum_{u=1}^{d} \beta_{u} k_{u}, \sum_{u=1}^{d} \beta_{u} = D, \beta_{u} \ge 0, \forall u \in \{1, \dots, d\} \right\}$$

$$- \frac{2}{n_{s} n_{t}} \sum_{i=1}^{n_{s}} \sum_{j=1}^{n_{s}} k(\mathbf{x}_{s}^{(i)}, \mathbf{x}_{t}^{(j)}) \right)^{\frac{1}{2}}$$

$$= \left(\frac{\operatorname{Tr}(\mathbf{K}_{xss})}{n_{s}^{2}} + \frac{\operatorname{Tr}(\mathbf{K}_{xtt})}{n_{t}^{2}} - 2 \frac{\operatorname{Tr}(\mathbf{K}_{xst})}{n_{s} n_{t}} \right)^{\frac{1}{2}},$$

[4] Long M, Cao Y, Wang J, et al. Learning transferable features with deep adaptation networks. In ICML, 2015.

Adaption on multiple layers:

 $\min_{\Theta} rac{1}{n_a} \sum_{i=1}^{n_a} J(heta(\mathbf{x}_i^{arepsilon}))$

Learning Transferable Features with Deep Adaption Networks

$$(a_i), y_i^a) + \lambda \sum_{l=l_1}^{l_2} d_k^2(\mathcal{D}_s^l, \mathcal{D}_t^l)$$

Simultaneous deep transfer across domains and tasks [5]

[5] Tzeng, E., Hoffman, J., Darrell, T., and Saenko, K. (2015). Simulta- neous deep transfer across domains and tasks. In ICCV, 2015.

1

Simultaneous deep transfer across domains and tasks

$$\mathcal{L}_C(x, y; \theta_{\text{repr}}, \theta_C) = -\sum_k \mathbb{1}[y=k] \log p_k$$

$$\mathcal{L}_D(x_S, x_T, \theta_{\text{repr}}; \theta_D) = -\sum_d \mathbb{1}[y_D = d] \log q_d$$

$$\mathcal{L}_{conf}(x_S, x_T, \theta_D; \theta_{repr}) = -\sum_d \frac{1}{D} \log q_d$$

$$\mathcal{L}_{\text{soft}}(x_T, y_T; \theta_{\text{repr}}, \theta_C) = -\sum_i l_i^{(y_T)} \log p_i$$

 $\min_{\substack{\theta_D}} \mathcal{L}_D(x_S, x_T, \theta_{\text{repr}}; \theta_D)$ $\min_{\substack{\theta_{\text{repr}}}} \mathcal{L}_{\text{conf}}(x_S, x_T, \theta_D; \theta_{\text{repr}}).$

 $\mathcal{L}(x_S, y_S, x_T, y_T, \theta_D; \theta_{\text{repr}}, \theta_C) =$ $\mathcal{L}_C(x_S, y_S, x_T, y_T; \theta_{\text{repr}}, \theta_C)$ 2 $+\lambda \mathcal{L}_{conf}(x_S, x_T, \theta_D; \theta_{repr})$ $+ \nu \mathcal{L}_{\text{soft}}(x_T, y_T; \theta_{\text{repr}}, \theta_C).$

Deep Transfer Learning with Joint Adaptation Networks [6]

[6] Long, M., Wang, J., and Jordan, M. I. Deep transfer learning with joint adaptation networks. In ICML, 2017.

$$\widehat{\mathcal{C}}_{\mathbf{X}^{1:m}} = \frac{1}{n} \sum_{i=1}^{n} \bigotimes_{\ell=1}^{m} \phi^{\ell} \left(\mathbf{x}_{i}^{\ell} \right)$$

 $D_{\mathcal{L}}(P,Q) \triangleq \left\| \mathcal{C}_{\mathbf{Z}^{s,1:|\mathcal{L}|}}(P) - \mathcal{C}_{\mathbf{Z}^{t,1:|\mathcal{L}|}}(Q) \right\|_{\otimes_{\ell=1}^{|\mathcal{L}|} \mathcal{H}^{\ell}}^{2}$

$$= \frac{1}{n_s^2} \sum_{i=1}^{n_s} \sum_{j=1}^{n_s} \prod_{\ell \in \mathcal{L}} k^\ell \left(\mathbf{z}_i^{s\ell}, \mathbf{z}_j^{s\ell} \right)$$
$$+ \frac{1}{n_t^2} \sum_{i=1}^{n_t} \sum_{j=1}^{n_t} \prod_{\ell \in \mathcal{L}} k^\ell \left(\mathbf{z}_i^{t\ell}, \mathbf{z}_j^{t\ell} \right)$$
$$- \frac{2}{n_s n_t} \sum_{i=1}^{n_s} \sum_{j=1}^{n_t} \prod_{\ell \in \mathcal{L}} k^\ell \left(\mathbf{z}_i^{s\ell}, \mathbf{z}_j^{t\ell} \right)$$

$$\min_{f} \max_{\theta} \frac{1}{n_{s}} \sum_{i=1}^{n_{s}} J\left(f\left(\mathbf{x}_{i}^{s}\right), \mathbf{y}_{i}^{s}\right) + \lambda \widehat{D}_{\mathcal{L}}\left(P, Q; \theta\right).$$

Contents

Other Methods

Outlook on Future

Other Methods

Adaptive Batch Normalization for practical domain adaptation [7]

Algorithm 1 Adaptive Batch Normalization (AdaBN)

for neuron j in DNN do

Concatenate neuron responses on all images of target domain t: $\mathbf{x}_j = [\dots, x_j(m), \dots]$

Compute the mean and variance of the target do-

main:
$$\mu_j^t = \mathbb{E}(\mathbf{x}_j^t), \sigma_j^t = \sqrt{\operatorname{Var}(\mathbf{x}_j^t)}.$$

end for

for neuron j in DNN, testing image m in target domain do

Compute BN output $y_j(m) := \gamma_j \frac{\left(x_j(m) - \mu_j^t\right)}{\sigma_j^t} + \beta_j$ end for

[7] Li, Y., Wang, N., Shi, J., Hou, X., and Liu, J. Adaptive batch normalization for practical domain adaptation. Pattern Recognition, 2018, 80:109–117

Utilize the same variance and bias on both domains.

Other Methods AutoDIAL: Automatic Domain Alignment Layers [8]

[8] Carlucci, F. M., Porzi, L., Caputo, B., Ricci, E., and Bulò, S. R. AutoDIAL: Automatic domain Alignment Layers. In ICCV, 2017

Contents

Other Methods

Outlook on Future

Outlook on Future

- Combination with human knowledge
- Transitive transfer learning
- Online transfer learning

٠

• Transfer reinforcement learning