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Transfer Learning Deep Learning

• Big data


• Powerful computation


• New algorithmic techniques


• Mature software packages and architectures


• ……
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Why is deep learning so significant?

Deep learning

Features: 
Radish/Red 
Fruit 
Shape 
etc…

Features: 
Sky Blue 
Logo 
Shape 
etc…

Features: 
Yellow 
Fruit 
Shape 
etc…

Feature Engineering
End-to-end learning 

through gradient descent 
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Comparison



Introduction
How transferable are features in deep neural networks? [1]
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[1] Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. How transferable are features in deep neural networks? In NeurIPS, 2014 

• BnB: First n layers are copied from 
base B and frozen. Others are 
randomly initialized.


• AnB: First n layers are copied from 
base A and frozen. Others are 
randomly initialized.


• BnB+: BnB but all layers trainable.


• AnB+: AnB but all layers trainable.
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Conclusion of the paper:

• The first 3 layers are general.


• Fine-tune improves performance notably.


• By Fine-tuning data from different domain can be used.


• Deep transfer networks are better than randomly initialized ones.
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Core Methods
Why we need domain transfer methods?
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Train set Test set

Source

domain \ \

Target

domain ?

xs ys

yTxT xT

In fine-tune method, y_T is needed!  



Core Methods
Domain Adaptive Neural Networks for Object Detection [2]
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[2] Muhammad Ghifary, W. Bastiaan Kleĳn, and Mengjie Zhang. Domain Adaptive Neural Networks for Object Recognition. In PRICAI, 2014 

Maximum Mean Discrepancy (MMD):




Core Methods
Domain Adaptive Neural Networks for Object Detection
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Joint loss function:


where




Core Methods
Deep Domain Confusion: Maximizing for Domain Invariance [3] 
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[3] Tzeng E, Hoffman J, Zhang N, et al. Deep domain confusion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474, 2014 

Improvement: Deeper network (Alexnet).




Core Methods
Learning Transferable Features with Deep Adaption Networks [4] 
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[4] Long M, Cao Y, Wang J, et al. Learning transferable features with deep adaptation networks. In ICML, 2015. 

Multiple Kernel variant of Maximum Mean Discrepancy (MMD):
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Learning Transferable Features with Deep Adaption Networks 
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Adaption on multiple layers:




Core Methods
Simultaneous deep transfer across domains and tasks [5] 
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[5] Tzeng, E., Hoffman, J., Darrell, T., and Saenko, K. (2015). Simulta- neous deep transfer across domains and tasks. In ICCV, 2015.
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Simultaneous deep transfer across domains and tasks 
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Core Methods
Deep Transfer Learning with Joint Adaptation Networks [6]
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[6] Long, M., Wang, J., and Jordan, M. I. Deep transfer learning with joint adaptation networks. In ICML, 2017.
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Other Methods
Adaptive Batch Normalization for practical domain adaptation [7]
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[7] Li, Y., Wang, N., Shi, J., Hou, X., and Liu, J. Adaptive batch normalization for practical domain adaptation. Pattern Recognition, 2018, 80:109–117 

Utilize the same variance and bias 
on both domains.




Other Methods
AutoDIAL: Automatic DomaIn Alignment Layers [8]
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[8] Carlucci, F. M., Porzi, L., Caputo, B., Ricci, E., and Bulò, S. R. AutoDIAL: Automatic domaIn Alignment Layers. In ICCV, 2017
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Outlook on Future
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• Combination with human knowledge


• Transitive transfer learning


• Online transfer learning


• Transfer reinforcement learning


• …


•


